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A PRACTICAL ENGINEERING APPROACH TO PREDICTING FATIGUE CRACK

GROWTH IN RIVETED LAP JOINTS

Charles E. Harris*

Robert S. Piascik**

James C. Newman, Jr.***

An extensive experimental database has been assembled from very

detailed teardown examinations of fatigue cracks found in rivet holes

of fuselage structural components. Based on this experimental

database, a comprehensive analysis methodology was developed to

predict the onset of widespread fatigue damage in lap joints of

fuselage structure. Several computer codes were developed with

specialized capabilities to conduct the various analyses that make up

the comprehensive methodology. Over the past several years, the

authors have interrogated various aspects of the analysis methods to

determine the degree of computational rigor required to produce

numerical predictions with acceptable engineering accuracy. This

study led to the formulation of a practical engineering approach to

predicting fatigue crack growth in riveted lap joints. This paper

describes a practical engineering approach and compares predictions

with the results from several experimental studies.

INTRODUCTION

The ability to predict the onset of widespread fatigue damage in fuselage structures requires

methodologies that predict fatigue crack initiation, crack growth, and residual strength.

Mechanics-based analysis methodologies are highly desirable because differences in aircraft

service histories can be addressed explicitly and rigorously by analyzing different types of

aircraft and specific aircraft within a given type. The development of these advanced structural

analysis methodologies has been guided by the physical evidence of the fatigue process

assembled from coupons, laboratory lap joints panels, and from detailed tear-down examinations
of actual aircraft structure.

Valid analytical methodology to predict the onset of widespread fatigue damage in fuselage

structure must be based on actual observations of the physical behavior of crack initiation, crack

growth, and fracture. The methodology presented herein is based largely on the results of

teardown fractographic examinations of aircraft fuselage components. A large section of a

fuselage containing a longitudinal lap joint extending for five bays was provided to NASA by an

aircraft manufacturer after conducting a full-scale fatigue test [1]. A schematic of the panel is

shown in Figure l(a). The fatigue test was terminated after reaching the number of fuselage

pressurization cycles that equaled approximately three times the original economic design life
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goal of the aircraft established by the manufacturer. This section of the fuselage was selected

because visual inspections, see Figures 1 (b) and (c), conducted during the test revealed that the

fatigue cracks, extending from adjacent rivets, eventually linked up to form a long crack that

extended completely across the bay. Further visual examinations of this section of the fuselage

after completing the full scale fatigue test suggested that this section contained multiple-site

damage (a precursor to widespread fatigue damage). All rivet holes in each of the five bays of

the panel were microscopically examined for fatigue cracks. The results of this examination

form the physical basis for the analytical methodology developed by NASA to predict the onset

of widespread fatigue damage.

The principal objective of the fractographic examination of the fuselage panel was to

characterize multiple-site damage in a fuselage joint by assembling a database on the initiation

and growth of fatigue cracks from rivets. Several general conclusions are obvious from the

database [2]. First, fatigue cracks were present at virtually every rivet hole in the top row of

rivets. The cracks ranged in size from about 50 micrometer to several centimeters. Crack

initiation mechanisms included high local stresses, fretting along mating surfaces, and

manufacturing defects created during the riveting process. The cracking behavior in each bay

was similar and the results of the fatigue marker bands were relatively independent of rivet hole

location. An example of small cracks found in the panel is shown in Figure 2. A small crack

initiating due to high local stresses within the rivet hole is shown in Figure 2 (a). An example of

a small crack initiating due to fretting is shown in Figure 2 (b). Figure 2 (c) shows a long crack

that has been formed by the link up of the small fatigue cracks that developed at adjacent rivet

holes. As can be seen in the photograph, the crack extended into the tear strap region, changed

crack growth directions, and grew into a rivet hole in the tear strap. The surfaces of the

individual fatigue cracks between the rivets were clearly identifiable in the fractographic

examination of the long crack surface. Close examination revealed several cracks that initiated

due to high local stresses and other cracks that initiated due to fretting. However, the lengths of

all of the fatigue cracks at link up were approximately the same. This observation suggests that

the long crack behavior is somewhat independent of the initiating mechanism. Furthermore, the

quantitative data strongly suggest that the fatigue behavior of the long cracks is deterministic and

predictable.

Based on the experimental evidence described above, the authors led the development of a

comprehensive analysis methodology to predict the onset of widespread fatigue damage in lap

joints of fuselage structure. Several computer codes were developed with specialized

capabilities to conduct the various analyses the make up the comprehensive methodology. A full

description of this methodology and the associated computer codes is given in reference 3. Over

the past several years, the authors have interrogated various aspects of the analysis methodology

to determine the degree of computational rigor required to produce analytical predictions with

acceptable engineering accuracy. This study led to the formulation of a practical engineering

approach to predicting fatigue crack growth in riveted lap joints. This practical engineering

approach is the subject of this paper.
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ENGINEERINGAPPROACH:ANALYSIS METHODOLOGY

In orderto predictthefatiguelife of a lapjoint in a fuselagestructure,thefollowing globaland
local stressandfracture-mechanicsanalysesarerequired:

(1) global andlocalstressanalysesof the lapjoint in thefuselagestructure,
(2) local elasticstressanalysesof arivet-loadedhole,
(3) stress-intensityfactor analysisfor cracksat critically-loadedrivet hole,
(4) fatigueanalysesbasedon fracturemechanicsandsmallcracktheory,and
(5) residualstrengthanalysisbasedonnonlinearfracturemechanicsanalyses.

It shouldbenotedthat theseglobalandlocal analyseshavebeendefinedsuchthat the load
transferthroughtherivetedjoint canbeapproximatedby combiningtheresultsof thefirst four
analyses.Theauthorsrecognizethatthe actualloadtransferin therivetedjoint is avery
complex,nonlinearanalysisproblem. Thesourcesof thenonlinearstressanalysisbehavior
includetheinteractionbetweentherivet bearingcontact,clamp-upandfriction effects,
interferencefit stresses,bendingeffects,andcrackgrowth. Ratherthansolvingthefully
nonlinear,three-dimensionalproblem,theaboveanalyseswereconductedin an interactive
analysisscheme.Eachof thefive analyseswill bedescribedin detail in thefollowing sections.

(1) Globalandlocal stressanalysesof the lapjoint in thefuselagestructure

To determinethe loadtransferin the lapjoint of a fuselagestructure,aglobalfinite-element
stressanalysisisconductedusingeitherthecommercialcodes(suchasABAQUS,ANSYS or
MSC-NASTRAN) or theSTAGS(shell)code[4]. In thecurrentpaper,the STAGScodewas
usedfor thispurpose.Thefinite-elementmeshshownin Figure3 is aglobalmodelof a lap-joint
regionin a fuselagestructurewith stringers,frames,andshearclipsmodeled.Thelocalmodel,
Figure3, showsthedetailedlap-joint regionwith therivetedconnectionsmodeledwith rigid
links [4]. Fastenerelementscomprisedof linearspringswereusedto modelthemechanical
connectionbetweenthelayersat therivet locations,asshownin thedetailedmodelof therivet in
Figure3.

(2)Local elasticstressanalysesof arivet-loadedhole

Fromthelocal stressanalysesof the lapjoint, the loaddistributionsandby-passloadingis
determined.For typical lapjoints with 2, 3 and4 rivet rows,finite-elementanalysesproduce
rivet loading(toprivet row) in termsof the local stressas0.5,0.37and0.29,respectively.For
example,for the3-rivet row, 37%of the loadis carriedbytherivet loadingand63%of the load
is theby-passloading[5].

Theeffectsof secondarybendingis determinedfrom eitherthe localelasticfinite-elementstress
analysisof the lapjoint or estimatedfromtheHartman-Schijve[6,7]bendingequations.Three-
dimensional(3D) stressanalysesof atypical lapjoint arepresentedin reference[8]. These
analysesshowgoodcorrelationof thecalculatedbendingstressesfrom the3D analyseswith the
Hartman-Schijveequationsfor elasticconditions.But if theappliedstressesarehighenough,
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thenlocalplasticyieldingaroundtherivet holerotatesthejoint andcausesadramaticreduction
in thebendingstresses.

For laboratoryspecimens,it hasbeenfoundthatrivet interferencefit stressesareneededto
predictthefatiguelife of lapjoints [9]. However,examinationof fatiguetestresultsonafull-
scalefuselagetestarticle[1] indicatethattherivetedholesin the lapjoint arein aneat-fit
conditionandinterferenceisnot neededto predictthefatiguecrackgrowthrates.

(3) Stress-intensityfactor analysisfor cracksat critically loadedrivet hole

Fatiguelife andfatiguecrackgrowthpredictionsfor rivetedlapjoints presentedhereusesa
fracture-mechanicsapproachgrowingacrackfrom themicro-scaleto failure. To makethese
calculations,thestress-intensityfactorsfor cornerandthroughcracksemanatingfrom straight-
shankrivet-loadedhole,asshownin Figure4, subjectedto rivet loading(P),by-passstress(Sb),
remotebending(M) andrivet interference(A) areneeded.Stress-intensityfactorshavebeen
calculatedfrom finite-elementanalysesandsomeof theseequationsaregivenin reference9.

To studythe influenceof the 100°-countersunkrivet-holeconfigurationonstress-intensity
factors,somerecentresultsusingtheboundary-elementmethod are compared in Figure 5 with

some previous results on a straight-shank hole. Here the normalized stress-intensity factor is

plotted against crack-length-to-hole radius (c/r). The open symbols are results for a straight

crack in a straight-shank hole subjected to remote tension [10]. The solid circular symbol is for a

straight crack in the countersunk configuration, as shown by the insert. The square symbols are

for a circular crack with the center at the knife-edge of the countersink. Surprisingly, the results

for a small crack in the knife-edge region gives about the same normalized stress-intensity

factors for the straight or countersunk hole, presumably because of load transfer differences. The

countersunk hole, near the knife-edge is thin and less stiff than the full thickness region; thus

more load would be shifted away from the knife-edge region. If the same load had been

experienced in the knife-edge region, then the stress-intensity factor should have been much

greater than the straight-shank results. These results demonstrate that the corner crack at a

straight-shank hole may also serve as a good approximation for a crack at the countersunk hole.

(4) Fatigue analyses based on fracture mechanics and small crack theory

Because crack initiation effects are highly complex, fracture mechanics based life predictions

have used the concept of an equivalent initial flaw size (EIFS) to capture the initiation process

and start the problem at a reasonable flaw size [11]. To achieve accurate predictions, the EIFS

must be chosen carefully. The EIFS should be based on a good understanding of the crack

initiation processes associated with the specific crack problem being analyzed. Because the

EIFS concept starts the problem at an assumed pre-existing level of damage, it does not

mechanistically address the initiation process and when or at what rate the initiation damage

occurs. For example, an EIFS used for fretting damage neither addresses when a critical level of

fretting will cause crack initiation nor addresses local phenomenon, such as, the influence of

fretting induced residual stress on small crack growth rates.
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Smallcrackinitiation andgrowthis athree-dimensionalprocesswith cracksgrowingin the
depthandlengthdirectionsinteractingwith thegrainboundariesat differenttimesin their cyclic
history. Whereasacrackgrowingin the lengthdirectionmayhavedeceleratedator nearagrain
boundary,thecrackdepthmaystill begrowing. As thecrackgrowsin thedepthdirection,the
rise in thecrack-drivingforcecontributesto thecrackpenetratingthatbarrier. As thecracks
becomelonger,the influenceof thegrainboundariesbecomelessasthecrackfront beginsto
averagebehaviorovermoregrains[12]. A probabilisticanalysiswouldberequiredto assessthe
influenceof thevariability of thegrainstructureoncrackgrowthrateproperties.Froman
engineeringstandpoint,however,aweak-linkof worstcasescenarioof grainorientationmay
provideaconservativeestimatefor thegrowthof smallcracksthroughacomplexmicrostructure.
This is thebasisfor thecontinuummechanicsapproaches.

It hasbeenarguedthat thecalculationof crack-tipstressintensityrangefactor(AK) for asmall
crackgrowingfrom asmalldefectcouldbein error [13]. For example,if crack initiation occurs
at asubsurfaceinclusionwith subsequentbreakthroughto the surface,aconsiderableelevationin
AK ispossibleoverthatcalculatedfrom thesurfaceobservations.Althoughtheuseof AK to
characterizethegrowthof smallcrackshasprovedto beconvenient,its universalapplicationhas
beenviewedwith someskepticism.Despitetheabovequalifications,researchworkon the
growth of naturallyinitiatedsmallcracks,notablyby Lankford[12,14]andtheAGARD studies
[15,16],havedemonstratedtheusefulnessof theAK concept.

Oneof the leadingcontinuummechanicsapproachesto smallcrackgrowthis that basedon the
crack-closureconcept[17,18]. Thecrack-closuretransienthaslongbeensuspectedasaleading
reasonfor thesmallcrackeffect. Crackclosuremodeling[19] hasdemonstratedthecapabilityto
modelsmallcrackgrowthbehaviorin awidevarietyof materialsandloadingconditions[15-18].
Difficulties still exist for large-scaleplasticdeformationsat holesor notchesbut theseproblems
canbetreatedwith advancedcontinuummechanicsconcepts.

(5)Residualstrengthanalysisbasedonnonlinearfracturemechanicsanalysis

Theresidualstrengthanalysisof cracked2024-T3coupons,lap-joint specimens,structuraltest
articles,andaircraftfuselagesrequirenon-linearandelastic-plasticfracturemechanicsanalyses.
For thecouponsandthelaboratorylap-jointpanels,a two-parameterfracturecriterion(TPFC)
[20] is usedin theFASTRAN codeto terminatethecrack-growthanalysis.For smallwidth
couponsandlapjoints, theTPFCfracturecriterionis verycloseto anet-section-equal-yield-
stressfailurecriterion. For lapjoints with multiple-sitedamage(MSD)crackingin large
structuraltestarticlesto simulatefuselagepanels[21], the STAGSandthecritical crack-tip-
openingangle(CTOA) fracturecriterionhasbeensuccessfullyusedto predictstabletearingand
residualstrength.Herein,only theTPFCwill beusedto predictthefailureof couponsandlap-
joint specimens.It shouldbenotedthatthefull-scaleaircraft fuselagefatiguetestwasstoppedat
66,000pressurecyclesandaresidualstrengthanalysiswasnotneeded.

ENGINEERINGAPPROACH:PREDICTIONS

The"engineeringapproach"usedfor the lapjoint fatiguelife predictionsmadehereinaccount
for rivet load,by-passload,secondarybending,simplerivet holeconfiguration,small-crack
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behavior,andsomeenvironmentaleffects. TheEIFSusedfor thesepredictionsconsiders,but
doesnot rigorouslyaccountfor, thefollowing effectsoncrackinitiation andgrowth: rivet fit-up
andinterferencefit stresses,residualstressesfrom multiple sources,manufacturingdefectsin the
rivet joint, specific3-D rivet-holeconfiguration,localstressconcentrationsat themicro-scale,
frettingkinetics,cladding,andenvironmental(pitting corrosionandfretting-oxidedebris)
effects.

LaboratoryCouponFatigueTest

Figure6 showsacomparisonof small-crackdata[22] andlarge-crackdata[23] for the2024-T3
alloy. Thesmallcrackdata,shownby thesymbols,is only a smallpartof theoveralldatabase
onthis alloy. TheseresultsatR = 0 weretakenin laboratoryair conditionsandat anapplied
stresslevelof 110MPa. Thisalloy showedavery largedifferencebetweenthelarge-crack
threshold(about3 MPa_/m)andsmall-crackgrowthbehavior. Smallcracksgrewat AK values
aslow as0.7 MPa_/m.But for AK valuesgreaterthan3 MPa_/m,the small-andlarge-crackdata
agreedquitewell. Thesolidcurveis thepredictedratesfrom theFASTRAN closuremodel
usingthebaselineAKeff- ratecurve(dashedline). (Theconstraintfactor, o_,whichaccountsfor
the state-of-stressaroundthecrackfront,wasequalto 2.) Theinitial defectwasselectedasa 6
gm-radiussurfacecrack locatedatthecenterof thenotch. FortheR = 0 condition,the initial
drop in ratesat aAK valueof about1MPa_/misquite small.

PiascikandWillard [24] conductedsmall-crackfatiguetestsonnotched2024-T3aluminum
alloy specimensimmersedin asalt-watersolution. Theseresultsareshownin Figure7. (Note
thatthe small-crackexperimentswereconductedin 1%NaC1solutionandpolarizedto nearthe
opencircuit potential,-700mVscE.Thiswasdoneto preservefracturesurfacesandno
appreciabledifferencein daMNis likely comparedto 3.5%NaC1solution). In Figure7, the
effectivestress-intensityfactor isplottedagainstrate. For testsconductedat stressratiosgreater
thanor equalto 0.7,theAK valuesreportedwereassumedto beequalto AK_ff.But for the
resultsatR = 0.05,thecrack-openingstresslevelwasassumedto be thesameasthatfor
laboratoryair (like thoseusedto analyzethedatashownin Fig. 6). Thesolid linesweredrawn
throughthemeanof thetestdataunderthe salt-watersolution. ThedashedlinesshowtheAKeff
- ratefor thebareandAlclad 2024-T3underlaboratoryair conditions. Thelargest
environmentaleffect is at low levelsof AK whereafactorof 5 increasein salt-waterrates
comparedto air rates(dashedline) is observedat aAK of 1MPa_/m.But at aAK of
approximately7 MPa_/m,salt-waterandlaboratory-airratesconverge;here,thefatiguecrack
growthratesarefastandcrack-tipenvironmentaleffectsareminimized.

LandersandHardrath[25] determinedthefatiguelives of 2024-T3aluminumalloy specimens
with acentralholeunderlaboratoryair conditions. Theresultsfor specimenswith aholeradius
of 1.6manandtestedattwo stressratiosareshowninFigure8. Thesymbolswith arrows
indicatethatthetestwasstoppedbeforefailure. Thecurvesarethepredictedresultsusingan
initial semi-circularcracksize(6 gin) that hadanequalareato theaverageinclusion-particle
sizesthat initiatedcracks[1]. Theanalysestendedto underpredictlives for R = 0 andslightly
overpredictlives for R = -1. Theinfluenceof stressratio on fatiguelimits waspredictedquite
well usingavalueof (AKeff)th of 0.75 MPa_/m (determined from the un-notched specimens

[26]). Note that for aluminum alloys the fatigue limit is not well defined and the AKeff- rate
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curvein Figure6mighthavea steepslopefor ratesbelow 1x 10s ram/cycleinsteadof havinga
sharpcutoff.

LaboratoryPanelLap JointFatigueTest:Straight-shankrivets

A seriesof testswereconductedby Hartman[27] to studythefatiguebehaviorof simpleriveted
single-lapjoints with straight-shankrivetsunderlaboratoryair androomtemperatureconditions
for constant-andvariable-amplitudeloading. Thetestspecimenswereflat unstiffenedpanels
with ajoint formedby two overlappingsheetsattachedby two rowsof rivets loadedin single
shear,asshownin Figure9. Thesheetswerealuminumalloy 2024-T3Alclad at anominalsheet
thicknessof 1mm andtherivetswere2024aluminumalloy (typeDD). Thestraightshank,
button-headrivetshadadiameterof 3.2mm. In aHtests,aconstantmeanstresswasapplied
correspondingto anominalgrosstensilestressof 68.6MPa. Constant-amplitudefatiguetests
wereconductedunderalternatingstressesrangingfrom ahigh of 67MPato alow of 16MPa.
At leasttwo replicatefatiguetestswereconductedfor eachloadingcondition. Thesealternating
stressesresultedin fatiguelivesfrom about40,000to over30million cyclesto failure. In the
variable-amplitudefatiguetests,specimensweresubjectedto ablock-programloadingsequence
containingelevendifferent stress-amplitudeblockscomposedof atotal of 59,300cycles.

Thegeneralconclusionby Hartman[27] wasthattherivetingprocedure,hydraulic,pneumatic,
handdriven,or riveting machine,did not appearto havea significanteffecton fatiguelife.
Severalseriesof testswerepurposelydesignedto achievea largerrivet headdiameterproducing
higherinterferenceandclamp-upstresses.Thefirst andsecondtest serieshadarivet-head
diameterfrom 5.0to 5.2mm and5.4to 5.8mm,respectively.At eachstressamplitude,about
twentyfatiguetestswereconductedbut thescatterwasremarkablysmallconsideringsucha
complexjoint andthemanymanufacturingvariablesstudied. (Theseresultswill beshown
later.) While thefatiguedatafrom thesetwo setsof test seriesdid overlap,the largediameter
rivet headsresultedin ameanfatiguelife that wasaboutafactorof 2 higherthanthemean
fatiguelife for the specimenswith thesmallerdiameterrivet heads.

Becausetheouterrivetscarryahigherrivet load,theseholesareexpectedto crackearlierthan
theotherholes[9]. Thus,thefailureprogressionstartswith smallcornercracks(6 Bm)located
attheedgeof therivet holeandfaying surfacefor theouterrivets,thecornercrackspropagates
throughthethickness,andthenthethroughcrackspropagateuntil theK valuefor therivet-
loadedcrackis equalto that for adouble-edgecracksubjectedto only remotestress.Failurewill
occurwhenthefracturetoughnessof thematerialisexceeded.The"effective" interferencewill
thenbeselectedto fit testdataonthe lapjoints underconstant-amplitudeloading. Thenthe
sameinitial cracksizeandinterferencelevelwill beusedto predictthefatiguebehaviorunder
theblock-programloading.

A comparisonbetweenthemeasuredandcalculatedfatiguelives for theNetherlandsNational
AerospaceLaboratory(NLR) lapjoints with arivet-headdiameterof 5.1areshownin Figure10.
Thedashedcurveis thepredictedfatiguelivesbasedon "no interference"andaninitial flaw size
of 6 Bm. Thesolidcurveis thepredictedlivesfor aninterferencelevelof 5.8Bmfor the5.1-mm
rivet-headdiameter.Theinterferencelevelwasselectedby trial-and-errorto fit theexperimental
testdata. Thecalculatedfatiguelivesagreedwell with themeanof thetestdataonthelapjoints.
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However,if a largerflaw sizehadbeenselected,thentheinterferencelevelneededto fit these
testdatawouldhavealsobeenlargerbecausetheno-interferencelife calculationswouldhave
beenshorterthanthepresentcalculatedlives. Althoughtheselevelsof interferencearevery low,
in comparisonto quotedvaluesin the literature,therivet canonly exertan"elastic" spring-back
ontherivet hole. Dependinguponthelevelof radialpressureexertedbytherivet (yield stressto
severaltimestheyield stress),someestimatesof theelasticspring-backrangedfrom 4 to 16gm.

Hartman[27] conductedalargenumberof fatiguetestson the sametypeof lapjoint under
block-programloadingfor the samemanufacturingconditionsasthe constant-amplitudetests.
Theblock-programloadinghadelevendifferent stressamplitudes(constantmeanstress)for a
low-high-low sequencefor 59,300cycles. Themeasuredfatiguelivesundertherepeatedblock-
programloadingareshownin Figure 11asopenandsolidsymbolsfor thetwo rivet-head
diameters,respectively.Althoughthetestresultsshowedalargeamountof scatter,the larger
rivet-headdiameterproduceda slightly longerfatiguelife thanthesmallerrivet-headdiameter
tests,similar to theconstant-amplituderesults. Thedottedline showsthepredictedlife with no
interference(A = 0). Thesolidanddashedlinesarepredictedlives usingthetwo levelsof
interferencedeterminedfromtheconstant-amplitudetests. Thesepredictedresultsareveryclose
to themeanlife obtainedfromthetestoneachrivet-headdiameter.Thesecomparisons
demonstratethecapabilityto analyticallypredictfatiguelives of rivetedlapjoints basedsolely
oncrackpropagationandsmall-cracktheory.

LaboratoryPanelLap JointFatigueTest:Countersunkrivets

A seriesof testswereconductedby Furuta,TeradaandSashikuma[28] to studythefatigue
behaviorof countersinkrivetedlap-jointpanelsexposedto laboratoryair or to a corrosivesalt
waterenvironment.Figure12showstheconfigurationof thefour typesof 2024-T3(Alclad)
panelstested:Type 1- two rivet row, Type2 - threerivet row, Type3 - threerivet row with
thin-straighttearstraps,andType4- threerivet row with non-uniformthicknesstearstraps.
Testingwasconductedatconstantamplitudeloadingwhichsimulatedthefuselageskinstress.
Testswereconductedunderambient(laboratoryair androomtemperature)conditionsandunder
acorrosiveenvironment.Forthecorrosiveenvironment,the lap-jointpanelswereimmersedin
circulating3.5%NaC1solution.

Theremotestressdueto rivet load (Sp), by-pass stress (Sb) and remote bending stresses (SM)

were used in the life analyses of Furuta's panels [28]. An interference level was not used in any

calculations (A = 0). The two-rivet row (Type 1) had a 50% rivet and by-pass stress; whereas,

the three-rivet row (Types 2-4) had 37% rivet stress and 63% by-pass stress. Only Type 1 was

considered with and without bending. Schijve's [7] rivet-rotation correction bending equations

were used to estimate the bending stresses. Based on 3-D stress analyses in reference 9, the

applied stress level of 96 MPa, in Furuta's panel, should have resulted in yielding of the rivet

hole and greatly reduced the bending effects.

Figure 13 shows that the fatigue-life of Type 1 panels exposed to salt water (square symbol) is

reduced by a factor of about 1/2 or 1/3 compared to the fatigue-life in ambient laboratory air

(circle symbol). The FASTRAN predictions, for salt water (dashed line) and laboratory air (solid

line) environments are in excellent agreement with the experimental results. Here, the fracture
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mechanicsbasedcalculationsassumedacornercrackin aneat-fit riveted-loadedstraightshank
hole(rivet fit-up andinterferencefit stressesareassumedsmall). The6 _tmradiusEIFSusedfor
eachFASTRAN predictionis consistentwith laboratoryobservations;6 _tmradiusconstituent
particlesandcorrosionpits areobservedat smallcrackinitiation sitesin fatiguetest coupons
exposedto laboratoryair andsaltwater,respectively[18, 25]. Figure14showsthatthe
"engineeringapproach"accuratelypredictsthefatiguelife for all panelconfigurationsand
environments.TheFASTRAN predicted(solidcircle) fatiguelife shownin Figure 14arein
excellentagreementwith Fututa'stestresults(opencircle).

Full-ScaleAircraft FuselageFatigueTest

The"engineeringapproach"wasusedto predictthetotal fatiguelife of thefull-scalefuselage
testarticlepreviouslydescribedin theIntroduction[1,2]. Theexperimentallydeterminedcrack
growthratedatafrom 3panelsand7 baysareplottedin Figure15. Thetestresultsincludedata
from bothcounterboreandstraightshankrivet holeconfigurations.It is obviousthatthedatais
well behavedandsuggeststhat fatiguecrackgrowthis deterministicandpredictable.Figure16
comparesthetestresultsobtainedfromthefull-scaletestarticledestructiveexaminationand
FASTRAN predictions.Two distinctpopulationsareshownin Figure16,theopencircle data
arethosecracksthatinitiatedfirst andgrewto longerlengthsandthe solidsymbolsaresmaller
cracksthatinitiated laterin life. Thepredictionsarebasedonengineeringestimatesof remote
stress(PR/t),bendingstress(Schijve'sapproximation),andby-passloading(29%for afourrivet
row lapjoint). In keepingwith the "engineeringapproach",theneatpin / straight shank hole /

corner crack configuration was used to calculate crack-tip stress intensity factors. An EIFS was

selected based on the results of the detailed destructive examination; here, the majority of fatigue

cracks initiated by a fretting damage located in the laying surface clad (reference) and therefore,

an EIFS of 50 gin, the nominal thickness of the clad, was selected. The FASTRAN (50 gin)

prediction is in excellent agreement with fatigue cracks that initiated later in life. Also shown in

Figure 16 is a prediction based on an EIFS of 100 gin; here, the calculated results reasonably

predict the life of the lap joint that exhibited much greater fretting damage and cracks that

initiated earlier in life. The third prediction shown in Figure 16 used an EIFS (6 gin) identical to

that used for the Furuta's panel prediction discussed above. The 6 gm EIFS results in a

prediction that substantially over predicts the total fatigue life of the fuselage lap joint,

suggesting that the effects of fretting on total fatigue life are substantial.

CONCLUDING REMARKS

An extensive experimental database has been assembled from very detailed teardown

examinations of fatigue cracks found in the rivet holes of several fuselage structural components.

The primary observation from an examination of this experimental database is that the fatigue

crack growth behavior is well behaved and, therefore, predictable using a deterministic

methodology. Based on the results of this experimental study, the authors developed a

comprehensive analysis methodology to predict the onset of widespread fatigue damage in lap

joints of a fuselage structure. Several computer codes were developed with specialized

capabilities to conduct various analyses that make up the comprehensive methodology. The

authors interrogated various aspects of the analysis methodology to determine the degree of

computational rigor necessary to generate analytical predictions with acceptable engineering

9



accuracy.It wasfoundthat someverycomplicatedaspectsof theanalysismethodologycouldbe
simplifiedwithout asignificantlossin computationalaccuracy. Thesimplificationsto the
analysisarethosetypically usedbypracticingengineers.For example,it wasfoundthatthe
residualstressesdueto rivet interferencefit hadasecondordereffecton thefatiguecrackgrowth
in thefuselagecomponentsincludedin this study. Therefore,thestressintensityfactorsusedin
thefatiguecrackgrowthcalculationscouldbeaccuratelydeterminedby compoundingthelinear,
elasticsolutionsfor the individual loadingcomponents.Theseobservationsledto the
formulationof apracticalengineeringapproachto predictingfatiguecrackgrowth in rivetedlap
joints. Comparisonsof the analyticallypredictedfatiguecrackgrowthvalueswerein close
agreementwith theexperimentalresults. Furthermore,anequivalentinitial flaw sizeengineering
(EIFS)approachwasfoundto bequite suitablefor predictingtotal fatiguelife of coupons,
panels,andfuselagecomponents.However,theEIFSmustbedeterminedfor eachunique
combinationof structuralgeometryandserviceenvironment.
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(a) Schematic of fuselage lap-joint panel

(b) Cracks extending from rivets (c) Large crack in panel

Figure 1. - Teardown examinations of actual aircraft panels with riveted lap joints.
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Outside surface of fuselage skin

200 l_m

(a) Crack initiation due to
high local stress,

...................... _i_
1 mm

(b) Crack initiation due to fretting (dashed
line indicates crack front).

(c) Large crack formed by the link-up of fatigue cracks at adjacent rivets.

Figure 2. - Progression of damage in full-scale fatigue test article from small crack at rivet hole

to link-up of multiple-site damage cracks and a large crack.
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Figure 3. - Global and local finite-element models of a lap joint in a fuselage structure.
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Figure 4. - Corner and through crack at riveted fastener hole under various loadings.
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